On uniform approximation in real non-degenerate Weil polyhedron

Albert I. Petrosyan

Received: March 24, 2006

Summary: It is proved that any function holomorphic in a real, non-degenerate Weil polyhedron G and continuous in its closure \overline{G} can be uniformly approximated by functions holomorphic in a neighborhood of \overline{G} . Besides, it is proved that such functions can be approximated by polynomials if G is a polynomial polyhedron.

1 Introduction

1. This paper is studies the possibility of uniform approximation of functions holomorphic in a Weil polyhedron $G \subset \mathbb{C}^n$ and continuous in its closure \overline{G} . It is proved that if G is real non-degenerate, then any function holomorphic in G and continuous in \overline{G} can be uniformly approximated by functions holomorphic in a neighborhood of \overline{G} (Theorem 3.1). Besides, it is proved that such functions can be approximated by polynomials if G is a polynomial polyhedron (Theorem 3.2). Note that the class of real non-degenerate polyhedrons is wide enough to provide approximation of any holomorphity domain by real non-degenerate polyhedrons.

The following method is used: after establishing the possibility of local approximation (Lemma 2.2), a global approximating function is "glued" from functions realizing local approximations (Theorem 3.1). To this end, an improvement of an argument from [1] is used for strictly pseudoconvex domains. This argument is based on some uniform estimates [2], [3] for the solutions of the equation $\overline{\partial}u=g$, where g is a $\overline{\partial}$ -closed differential form of (0,1)-type in G. Note that for arbitrary Weil polyhedrons there is no theorem on approximation. Besides, using a different method the author [4] has proved an approximation theorem under the requirement on complex non-degeneracy.

It turns out that if n = 2, then for the validity of the main result of paper it suffices to require that the non-degeneracy condition is satisfied only on the distinguished boundary of G. Nevertheless, in this case (Theorem 4.1) G is required to be a special polyhedron, i.e. the number of functions determining G equals 2 (to the dimension of \mathbb{C}^2).

2. A bounded domain $G \subset \mathbb{C}^n$ is called Weil polyhedron if there are some functions χ_1, \ldots, χ_N holomorphic in a neighborhood V of \overline{G} and such that

$$G = \{ z \in V : |\chi_i(z)| < 1, \quad i = 1, 2, \dots, N, \quad N \ge n \}.$$
 (1.1)

The boundary ∂G of G consists of the (2n-1)-dimensional "edges"

$$\sigma_i = \{z \in \partial G : |\chi_i(\zeta)| = 1\}$$

intersecting along the k-dimensional "ribs"

$$\sigma_{i_1,\ldots,i_k}=\sigma_{i_1}\cap\cdots\cap\sigma_{i_k}$$
.

The union of all the *n*-dimensional ribs is the distinguished boundary of G. The domain G is called polynomial polyhedron if all determining functions χ_i are polynomials in (1.1).

Definition 1.1 We call a polyhedron (1.1) real non-degenerate if for any collection i_1, \ldots, i_k the matrix

$$(\operatorname{grad}_{\mathbf{R}} |\chi_{i_1}(z)|, \ldots, \operatorname{grad}_{\mathbf{R}} |\chi_{i_k}(z)|)$$

attains its maximal rank in all points $z \in \sigma_{i_1,...,i_k}$. Here

$$\operatorname{grad}_{\mathbf{R}} \chi(z) = {}^{t} \left(D_{1} \chi(z), \dots, D_{n} \chi(z), \overline{D}_{1} \chi(z), \dots, \overline{D}_{n} \chi(z) \right),$$

where the superscript t before the bracket means transposition and

$$D_k \chi(z) = \frac{\partial \chi(z)}{\partial z_k}, \quad \overline{D}_k \chi(z) = \frac{\partial \chi(z)}{\partial \overline{z}_k}, \quad k = 1, \dots, n.$$

Geometrically, Definition 1.1 means that the edges $\sigma_{i_1}, \ldots, \sigma_{i_k}$ intersect in a general position (in the real analysis sense).

2 Local approximation

We start by proving the following geometrical property of non-degenerate polyhedrons.

Proposition 2.1 Let G be a real non-degenerate polyhedron (1.1) and let $N \leq 2n$. Then for any point $\zeta \in \partial G$ there exist a neighborhood B_{ζ} and a vector v_{ζ} such that $z + \delta v_{\zeta} \in G$ if $z \in \overline{B}_{\zeta} \cap \overline{G}$ for sufficiently small $\delta > 0$.

Proof: Denote $\varphi_i = |\chi_i| - 1$ and assume that the point $\zeta \in \partial G$ belongs to the edge $\sigma_{i_1,...,i_k}$, i.e. $\varphi_{i_1}(\zeta) = 0, ..., \varphi_{i_k}(\zeta) = 0$ and

$$\varphi_s(\zeta) < 0, \quad s \neq i_1, \dots, i_k. \tag{2.1}$$

By $k \leq 2n$ and our assumptions, the vectors $\operatorname{grad}_{\mathbf{R}} \varphi_{i_1}(\zeta), \ldots, \operatorname{grad}_{\mathbf{R}} \varphi_{i_k}(\zeta)$ are linearly independent. Hence, there is some point w such that

$$\sum_{m=1}^{n} D_{m} \varphi_{j}(\zeta)(w_{m} - \zeta_{m}) + \sum_{m=1}^{n} \overline{D}_{m} \varphi_{j}(\zeta) \left(\overline{w}_{m} - \overline{\zeta}_{m}\right) < 0, \quad j = i_{1}, \ldots, i_{k}.$$

Due to the continuity of $D_m \varphi_j(\zeta)$ and $\overline{D}_m \varphi_j(\zeta)$, there is a neighborhood B_{ζ} , such that

$$\sum_{m=1}^{n} D_{m} \varphi_{j}(z) (w_{m} - \zeta_{m}) + \sum_{m=1}^{n} \overline{D}_{m} \varphi_{j}(z) \left(\overline{w}_{m} - \overline{\zeta}_{m} \right) < 0, \quad j = i_{1}, \dots, i_{k} \quad (2.2)$$

for all points $z \in \overline{B}_{\zeta}$. If $z \in \overline{B}_{\zeta}$, $\delta > 0$, then

$$\varphi_j(z + \delta(w - \zeta)) = \varphi_j(z) + 2\delta \operatorname{Re} \sum_{m=1}^n D_m \varphi_j(z) (w_m - \zeta_m) + o(\delta).$$
 (2.3)

Denoting $\nu_{\zeta} = w - \zeta$ and taking into account that $\varphi_j(z) \leq 0$ for $z \in \overline{G}$, from (2.2) and (2.3) we conclude that there exists some $\delta_0 > 0$ such that for $\delta < \delta_0$

$$\varphi_j(z + \delta \nu_\zeta) < 0, \quad j = i_1, \dots, i_k, \quad z \in \overline{B}_\zeta \cap \overline{G}.$$
 (2.4)

By continuity of φ_j , it follows from (2.1) that one can choose a neighborhood B_{ζ} and a number δ_0 such that for $\delta < \delta_0$

$$\varphi_s(z+\delta\nu_\zeta)<0, \quad s\neq i_1,\ldots,i_k, \quad z\in \overline{B}_\zeta\cap\overline{G}.$$

Hence, by (2.4) we conclude that $z + \delta \nu_{\zeta} \in G$.

Let A(G) be the uniform algebra of functions holomorphic in G and continuous in \overline{G} . Recalling that a function is said to be holomorphic in a compact set K if it is holomorphic in some neighborhood of K, we prove

Lemma 2.2 There exists a finite covering $\{U_k : k = 0, 1, ..., p\}$ of \overline{G} by open sets, such that for any $\varepsilon > 0$ and any $f \in A(G)$ there are some functions f_k holomorphic in $\overline{U_k} \cap \overline{G}$ and such that

$$\sup_{z \in \overline{U}_k \cap \overline{G}} |f(z) - f_k(z)| < \varepsilon. \tag{2.5}$$

Proof: Let $f \in A(G)$, $\zeta \in \partial G$ and let B_{ζ} be a neighborhood satisfying the conditions of Proposition 2.1. Then the family of open sets $\{B_{\zeta}: \zeta \in \partial G\}$ covers the compact ∂G , and a finite subcovering $\{B_{\zeta_k}, k=1,\ldots,p\}$ can be chosen. By Proposition 2.1, the functions $f(z+\delta \nu_{\zeta_k})$ are holomorphic in $\overline{B}_{\zeta_k} \cap \overline{G}$ for any sufficiently small $\delta > 0$. Besides, by the uniform continuity of f in \overline{G}

$$\sup_{z \in \overline{B}_{\zeta_k} \cap \overline{G}} \left| f\left(z + \delta \nu_{\zeta_k}\right) - f(z) \right| \to 0 \quad \text{as} \quad \delta \to 0.$$

Now, choosing $\delta > 0$ small enough and denoting $U_k = B_{\zeta_k}$, $f_k(z) = f(z + \delta \nu_{\zeta_k})$, we get (2.5) for k = 1, ..., p. Further, taking a compact subdomain $U_0 \subset G$ such that the system $\{U_k \colon k = 0, 1, ..., p\}$ is an open covering of \overline{G} and setting $f_0(z) = f(z)$ we conclude that (2.5) obviously is true also for k = 0.

3 Global approximation

The following Theorem is the main result.

Theorem 3.1 Let G be a real non-degenerate Weil polyhedron (1.1) and let $N \leq 2n$. Then any function $f \in A(G)$ can be uniformly approximated in \overline{G} by functions holomorphic in \overline{G} .

Proof: Let $\varepsilon > 0$, let $f \in A(G)$ and let $\{U_k : k = 0, 1, ..., p\}$ be those of Lemma 2.2. Then by Lemma 2.2, there are functions f_k holomorphic in $\overline{U}_k \cap \overline{G}$ and such that

$$||f_k - f||_{U_k \cap G} < \varepsilon, \quad k = 0, 1, \dots, p.$$
 (3.1)

Now suppose $\{e_k(z), k = 0, 1, ..., p\}$ is a partition of unity, i.e. a system of infinitely differentiable, nonnegative, finite functions such that

- (a) Supp $e_k \subset U_k, \ k = 0, 1, ..., p$,
- (b) $\sum_{k=0}^{p} g_k(z) \equiv 1$ in some neighborhood of \overline{G} .

Then, choose $\eta(\varepsilon) > 0$ small enough to provide the holomorphity of f_k in the sets

$$V_k = U_k \cap G^{\varepsilon}, \quad k = 0, 1, \dots, p,$$

where

$$G^{\varepsilon} = \{ z \in V : |\chi_i(z)| < 1 + \eta(\varepsilon), \quad i = 1, 2, \dots, N \}.$$

It is obvious that

$$||f_k - f_i||_{U_k \cap U_i \cap G} \le ||f_k - f||_{U_k \cap G} + ||f_i - f||_{U_i \cap G} < 2\varepsilon, i, k = 0, 1, \dots, p,$$
 (3.2)

and, if necessary, taking smaller $\eta(\varepsilon) > 0$ we can get

$$||f_k - f_i||_{V_k \cap V_i} < 3\varepsilon, \quad k, i = 0, 1, \dots, p,$$
 (3.3)

by continuity. Now consider the functions

$$h_{ik}(z) = \begin{cases} [f_i(z) - f_k(z)]e_k(z) & \text{if } z \in V_i \cap V_k; \\ 0 & \text{if } z \in V_i \setminus V_k, \end{cases}$$

$$h_i(z) = \sum_{k=0}^p h_{ik}(z). \tag{3.4}$$

One can see that the support of $g_k(z)$ belongs to the set B_k (by the assumption (a)) and the set $V_i^{\varepsilon} \cap \partial V_k^{\varepsilon}$ does not intersect with this support. Therefore, the functions h_{ik}^{ε} and h_i^{ε} are infinitely differentiable in V_i^{ε} , and by (3.3)

$$|h_i(z)| \le \sum_{k=0}^p |f_i(z) - f_k(z)| e_k(z) < 3\varepsilon \sum_{k=0}^p g_k(z) = 3\varepsilon$$
 (3.5)

for all $z \in V_i^{\varepsilon} \cap \overline{G^{\varepsilon}}$. Further, if $z \in V_i \cap V_j$, then

$$\begin{split} h_i(z) - h_j(z) &= \sum_{k=0}^p \left[f_i(z) - f_k(z) \right] e_k(z) - \sum_{k=0}^p \left[f_j(z) - f_k(z) \right] e_k(z) \\ &= \sum_{k=0}^p \left[f_i(z) - f_j(z) \right] e_k(z) = f_i(z) - f_j(z), \end{split}$$

i.e.

$$f_i(z) - h_i(z) = f_i(z) - h_i(z), \quad i, j = 0, 1, \dots, p.$$

This means that the function

$$\psi(z) = f_i(z) - h_i(z) \quad \text{if} \quad z \in V_i, \tag{3.6}$$

is globally given in G^{ε} , and moreover $h \in C^{\infty}(G^{\varepsilon})$. Besides, using the inequalities (3.5) and (3.1), from (3.6) we obtain

$$|\psi(z) - f(z)| \le |h_i(z)| + |f_i(z) - f(z)| < 4\varepsilon, \quad z \in U_i \cap \overline{G}.$$

Consequently,

$$\|\psi - f\|_G < 4\varepsilon. \tag{3.7}$$

Considering the differential form $g = \overline{\partial} \psi$ in the domain G^{ε} , one can see that $\overline{\partial} g = 0$. Besides, by (3.4) and the holomorphity of f_i in V_i

$$g = \overline{\partial}\psi(z) = \overline{\partial}h_i(z) = \sum_{k=0}^p \overline{\partial}h_{ik}(z) = \sum_{k=0}^p (f_i(z) - f_k(z))\overline{\partial}e_k(z)$$
(3.8)

for $z \in V_i \cap \overline{G^{\varepsilon}}$. In addition, if it is set $\gamma_0 = \gamma_0(G) = \max_{0 \le k \le p} \|\overline{\partial} e_k\|_{U_k}$, then by (3.8) and (3.3)

$$\|g\|_{G^{\varepsilon}} \le \sum_{k=0}^{p} \|f_i - f_k\|_{G^{\varepsilon}} \|\overline{\partial} e_k\|_{U_k} \le 3\gamma_0 \varepsilon. \tag{3.9}$$

Now consider the equation $\overline{\partial}u=g$. In [2, 3] it is proved that in the domain G^{ε} there exists a solution u_0 of this equation, which permits the uniform estimate

$$||u_0||_{G^{\varepsilon}} \le \gamma(G^{\varepsilon})||g||_{G^{\varepsilon}}. \tag{3.10}$$

One can be convinced that from the proof of (3.10) it follows that the constants $\gamma(G^{\varepsilon})$ are bounded, i.e.

$$\gamma(G^{\varepsilon}) \le \gamma = \gamma(G).$$
(3.11)

Besides, (3.10), (3.9) and (3.11) imply

$$||u_0||_{G^{\varepsilon}} \le 3\gamma_0 \gamma \varepsilon. \tag{3.12}$$

Further, the function $F(z) = \psi(z) - u_0(z)$ is holomorphic in the domain G^{ε} since $\overline{\partial}\psi - \overline{\partial}u_0 = g - \overline{\partial}u_0 = 0$. Besides, by (3.7) and (3.12)

$$||f - F||_G < ||\psi - f||_G + ||u_0||_G < 4\varepsilon + 3\gamma_0\gamma\varepsilon = \gamma_1\varepsilon$$

where the constant γ_1 depends solely on G.

For polynomial polyhedrons a stronger assertion than Theorem 3.1 is true. Before proving this assertion, recall that a compact set K is said to be polynomially convex if for any point $\zeta \notin K$ there is a polynomial P_{ζ} such that $|P_{\zeta}(\zeta)| > \max_{z \in K} |P_{\zeta}(z)|$. Besides, the Oka–Weil approximation theorem (see, e.g. [5]), states that any function holomorphic in a neighborhood of a polynomially convex compact set K can be uniformly approximated on K by polynomials.

Theorem 3.2 Let G be a real non-degenerate polynomial polyhedron (1.1) and let $N \le 2n$. Then any function $f \in A(G)$ can be uniformly approximated on \overline{G} by polynomials.

Proof: Suppose $\zeta \notin \overline{G}$ and note that $|\chi_i(\zeta)| > 1$ for some i by the definition of the polyhedron G, i.e. \overline{G} is polynomially convex compact set. It remains to see that the desired assertion follows from Theorem 3.1 and the Oka–Weil theorem.

4 Non-degenerate distinguished boundary

Below we shall assume that $D \subset \mathbb{C}^2$ is a special polyhedron

$$D = \left\{ z \in \mathbb{C}^2 \colon |\chi_i(z)| < 1, \ i = 1, 2 \right\}$$
 (4.1)

with real non-degenerate distinguished boundary $\Gamma = \{z \in \partial D \colon |\chi_1(z)| = |\chi_2(z)| = 1\}$, i.e.

$$\operatorname{rank}\left(\operatorname{grad}_{\mathbf{R}}|\chi_1(z)|, \operatorname{grad}_{\mathbf{R}}|\chi_2(z)|\right) = 2, \text{ if } z \in \Gamma. \tag{4.2}$$

The following Theorem relates to approximation on special Weil polyhedrons with real non-degenerate distinguished boundary. Note, that the set of special polyhedrons is wide enough: due to Bishop's theorem (see [6]) any polyhedron can be approximated by special ones.

Theorem 4.1 Let the polyhedron (4.1) satisfy (4.2). Then any function $f \in A(D)$ can be uniformly approximated in \overline{D} by functions holomorphic in \overline{G} . If D is a polynomial polyhedron any function $f \in A(D)$ can be approximated by polynomials.

Proof: By continuity, it is possible to choose a number $\delta > 0$ small enough to provide that the polyhedron

$$G = \left\{ z \in \mathbb{C}^2 \colon \ 1 - \delta < |\chi_i(z)| < 1, \ i = 1, 2 \right\}$$

(in a sense "attached" to Γ) be real nondegenerating. One can be convinced that Theorem 3.1 is true for G. Hence for any $f \in A(D) \subset A(G)$ and any $\varepsilon > 0$ there is a function F_{ε} holomorphic in some neighborhood of \overline{G} and such that

$$\max_{z \in \overline{G}} |f(z) - F_{\varepsilon}(z)| < \varepsilon. \tag{4.3}$$

Further, choose a number $\eta = \eta(\varepsilon) > 0$ such that closure of the polyhedron

$$G_{\varepsilon} = \left\{ z \in \mathbb{C}^2 \colon 1 - \delta < |\chi_i(z)| < 1 + \eta(\varepsilon), \ i = 1, 2 \right\}$$

belongs to the mentioned neighborhood. Then F_{ε} is holomorphic in $\overline{G}_{\varepsilon}$. Further, introducing the notations

$$\gamma_{1} = \left\{ z \in \overline{G}_{\varepsilon} \colon |\chi_{1}(z)| = |\chi_{2}(z)| = 1 + \eta(\varepsilon) \right\};
\gamma_{2} = \left\{ z \in \overline{G}_{\varepsilon} \colon |\chi_{1}(z)| = |\chi_{2}(z)| = 1 - \delta \right\};
\gamma_{3} = \left\{ z \in \overline{G}_{\varepsilon} \colon |\chi_{1}(z)| = 1 - \delta, |\chi_{2}(z)| = 1 + \eta(\varepsilon) \right\};
\gamma_{4} = \left\{ z \in \overline{G}_{\varepsilon} \colon |\chi_{1}(z)| = 1 + \eta(\varepsilon), |\chi_{2}(z)| = 1 - \delta \right\},$$

observe that the distinguished boundary of the polyhedron G_{ε} is the union of $\gamma_1 - \gamma_4$ oriented in an appropriate way. Therefore, according to the Bergman–Weil integral representation (see [7, 8]), for a $z \in G_{\varepsilon}$ we have

$$F_{\varepsilon}(z) = \sum_{k=1}^{4} \frac{1}{4\pi_2} \int_{\gamma_k} F_{\varepsilon}(\zeta) \frac{J(\zeta, z) d\zeta_1 \wedge d\zeta_2}{[\chi_1(\zeta) - \chi_1(z)][\chi_2(\zeta) - \chi_2(z)]} = \sum_{k=1}^{4} I_k(z), \tag{4.4}$$

where

$$J(\zeta,z) = \begin{vmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{vmatrix},$$

and P_{k1} and P_{k2} are Hefer's coefficients of the polynomial χ_k , which are defined by the decomposition

$$\chi_k(\zeta) - \chi_k(z) = (\zeta_1 - z_1)P_{k1}(\zeta, z) + (\zeta_2 - z_2)P_{k2}(\zeta, z), \quad k = 1, 2.$$

One can see that the summand $I_1(z)$ in the right-hand side of (4.4) is holomorphic in a neighborhood of \overline{D} since for $\zeta \in \gamma_1$ and $z \in \overline{D}$ the denominator

$$[\chi_1(\zeta) - \chi_1(z)][\chi_2(\zeta) - \chi_2(z)]$$

of the integrand of $I_1(z)$ does not vanish. Besides from the below proposition it follows that

$$\max_{z \in \Gamma} |F_{\varepsilon}(z) - I_1(z)| \le \sum_{k=1}^{3} \max_{z \in \Gamma} |I_k(z)| < c_1 \varepsilon, \tag{4.5}$$

where the constant c_1 is independent of ε . Hence, by the maximum principle and (4.3)

$$\max_{z \in \overline{D}} |f(z) - I_1(z)| = \max_{x \in \Gamma} |f(z) - I_1(z)| < (1 + c_1)\varepsilon,$$

i.e. in \overline{D} the function f is uniformly approximated by functions holomorphic in \overline{D} . For polynomial polyhedrons our statement is proved as that in Theorem 3.2.

Proposition 4.2 The following estimates are true for the summands of (4.4):

$$\max_{z \in \Gamma} |I_k(z)| < c\varepsilon, \quad k = 2, 3, 4,$$

where c is a constant independent of ε .

Proof: Obviously γ_2 is the distinguished boundary of the polyhedron

$$\{z \in \mathbb{C}^2 : |\chi_i(z)| < 1 - \delta, \ i = 1, 2\}.$$

Therefore, by our assumptions the function f is holomorphic in the closure of γ_2 , and according to of Bergman–Weil formula

$$\frac{1}{4\pi^2}\int_{\gamma_2} f(\zeta) \frac{J(\zeta,z)d\zeta_1 \wedge d\zeta_2}{[\chi_1(\zeta)-\chi_1(z)][\chi_2(\zeta)-\chi_2(z)]} = 0 \quad \text{for} \quad z \in \Gamma.$$

Thus

$$\begin{split} I_{2}(z) &= \frac{1}{4\pi^{2}} \int_{\gamma_{2}} F_{\varepsilon}(\zeta) \frac{J(\zeta, z) d\zeta_{1} \wedge d\zeta_{2}}{[\chi_{1}(\zeta) - \chi_{1}(z)][\chi_{2}(\zeta) - \chi_{2}(z)]} \\ &= \frac{1}{4\pi^{2}} \int_{\gamma_{2}} [F_{\varepsilon}(\zeta) - f(\zeta)] \frac{J(\zeta, z) d\zeta_{1} \wedge d\zeta_{2}}{[\chi_{1}(\zeta) - \chi_{1}(z)][\chi_{2}(\zeta) - \chi_{2}(z)]}. \end{split}$$

As $\gamma_2 \subset \overline{G}$, from (4.3) we obtain

$$|I_2(z)| \le \frac{\varepsilon}{4\pi_2} \int_{\gamma_2} \left| \frac{J(\zeta, z)d\zeta_1 \wedge d\zeta_2}{[\chi_1(\zeta) - \chi_1(z)][\chi_2(\zeta) - \chi_2(z)]} \right|, \quad z \in \Gamma.$$
 (4.6)

Further, it is obvious that

$$|\chi_k(\zeta) - \chi_k(z)| \ge ||\chi_k(\zeta)| - |\chi_k(z)|| = \delta, \quad k = 1, 2,$$

for $z \in \Gamma$ and $\zeta \in \gamma_2$. Therefore, by (4.6)

$$\max_{z \in \Gamma} |I_2(z)| < c\varepsilon. \tag{4.7}$$

To estimate the integrals I_3 and I_4 , consider the following real, three-dimensional edge of the polyhedron G_{ε} :

$$\sigma = \{ \zeta \in G_{\varepsilon} \colon |\chi_1(\zeta)| = 1 - \delta, \quad 1 - \delta < |\chi_2(\zeta)| < 1 + \eta(\varepsilon) \}.$$

This edge is bounded by the cycles γ_2 and γ_3 . Besides, for a fixed $z_0 \in \Gamma$ the set of singularities of the differential form

$$\omega = F_{\varepsilon}(\zeta) \frac{J(\zeta, z_0) d\zeta_1 \wedge d\zeta_2}{\left[\chi_1(\zeta) - \chi_1(z_0)\right] \left[\chi_2(\zeta) - \chi_2(z_0)\right]},$$

which lie on σ , is the curve

$$P_{z_0} = \{ \zeta \in \sigma \colon |\chi_1(\zeta)| = 1 - \delta_1, \ \chi_2(\zeta) = \chi_2(z_0) \},$$

and the mentioned form is closed in $\sigma \setminus P_{z_0}$. Besides, by Stocks' formula

$$\int_{\gamma_2} \omega - \int_{\gamma_3} \omega = \int_{\sigma} d\omega + \int_{P_{z_0}} \operatorname{res} \omega,$$

or, which is the same,

$$I_2(z_0) - I_3(z_0) = \int_{P_{z_0}} \text{res } \omega.$$

Hence, by (4.7) the desired estimate of I_3 follows from the estimate of $\int_{P_{z_0}}$ res ω . Besides, one can be convinced that

$$\operatorname{res} \omega = \frac{F_{\varepsilon}(\zeta)J(\zeta,z_0)}{\chi_1(\zeta) - \chi_1(z_0)} \frac{d\zeta_1}{D_2\chi_2(\zeta)} = -\frac{F_{\varepsilon}(\zeta)J(\zeta,z_0)}{\chi_1(\zeta) - \chi_1(z_0)} \frac{d\zeta_2}{D_1\chi_2(\zeta)},\tag{4.8}$$

where the second equality holds since $\chi_2(\zeta) \equiv \chi_2(z_0)$ for $\zeta \in P_{z_0}$ and hence $d\chi_2 = 0$ in P_{z_0} , i.e. $\frac{d\zeta_1}{D_2\chi_2(\zeta)} = \frac{d\zeta_2}{D_1\chi_2(\zeta)}$. Replacing F_{ε} by f in (4.8), we come to the differential form

$$\Omega = \frac{f(\zeta)J(\zeta,z_0)}{\chi_1(\zeta) - \chi_1(z_0)} \frac{d\zeta_1}{D_2\chi_2(\zeta)} = -\frac{f(\zeta)J(\zeta,z_0)}{\chi_1(\zeta) - \chi_1(z_0)} \frac{d\zeta_2}{D_1\chi_2(\zeta)}$$

which is holomorphic in all points of the analytic subvariety

$$T_{z_0} = \{ \zeta : |\chi_1(\zeta)| < 1 - \delta | \chi_2(\zeta) = \chi_2(z_0) \},$$

except the singularities $M \cap T_{z_0}$, where

$$M = \{ \zeta \in \mathbb{C}^2 : \text{ grad } \chi_2(\zeta) = 0 \}.$$

Observe that each component of the set M is either a point or a level surface of the function χ_2 (obviously differing from the level $\chi_2(\zeta) = \chi_2(z_0)$). Thus, T_{z_0} can contain only single-point components of the set M, and hence for all z from a certain neighborhood of a point z_0 (except z_0), lying on the surface T_z , the form Ω has no singularities.

Now note that $\partial T_z = P_z$ and

$$\int_{P_z} \Omega = \int_{T_z} d\Omega = 0$$

by Stocks' formula. It is obvious that the integral $\int_{P_z} \Omega$ continuously depends on z (at least in some neighborhood of z_0), and hence $\int_{P_{z_0}} \Omega = 0$. Therefore, taking into account that $|\chi_1(\zeta) - \chi_1(z_0)| \geq \delta$ for $\zeta \in P_{z_0}$ we obtain

$$\left| \int_{P_{z_0}} \operatorname{res} \omega \right| = \left| \int_{P_{z_0}} \operatorname{res} \omega - \int_{P_{z_0}} \Omega \right| = \left| \int_{P_{z_0}} \frac{[F_{\varepsilon}(\zeta) - f(\zeta)]}{[\chi_1(\zeta) - \chi_1(z_0)]} \frac{J(\zeta, z_0) \, d\zeta_1}{D_2 \chi_2(\zeta)} \right| < c\varepsilon.$$

Now it remains to observe that if in the argument above the derivative $D_2\chi_2$ vanishes in some points of P_{z_0} , then $D_1\chi_2 \neq 0$ in these points, and we replace $\frac{d\zeta_1}{D_2\chi_2(\zeta)}$ by $-\frac{d\zeta_2}{D_1\chi_2(\zeta)}$. The integral $I_4(z)$ is estimated similarly.

References

- [1] Lieb J., Ein Approximationssatz auf streng pseudoconvexen Gebieten. *Math. Ann.*, 184:56–60, 1969.
- [2] Petrosyan A. I., Henkin G. M., Solution with the uniform estimate of the $\overline{\partial}$ -equation in a real non-degenerate Weil polyhedron, [Russian]. *Izv. Akad. Nauk Arm. SSR Ser. Mat.*, 13:428–441, 1978.
- [3] Sergeev A. G., Henkin G. M., Uniform estimates for solutions of the $\bar{\partial}$ -equation in pseudoconvex polyhedra. *Math. USSR-Sb.*, 40:469–507, 1981.
- [4] Petrosyan A. I., Uniform approximation of functions by polynomials on Weil polyhedra. *Math. USSR Izv.*, 34:1250–1271, 1970.
- [5] Gamelin, T. W. Uniform algebras. Prentice-Hall, 1969.
- [6] Gunning R., Rossi H., *Analytic Functions of Several Complex Variables*. Prentice-Hall, 1965.
- [7] Bergman S., Über eine Integraldarstellung von Funktionen zweier komplexer Veränderlicher. *Mat. Sb.*, 1:851–861, 1936.
- [8] Weil, A., L'intégrale de Cauchy et les fonctions de plusieurs variables. *Math. Ann.*, 111:178–182, 1935.

Albert Petrosyan Faculty of Mathematics Yerevan State University 1 Aleck Manoogian street 375049 Yerevan Armenia albpet@xter.net