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Abstract

Let X(t), t = 0,±1, . . . , be a real-valued stationary Gaussian sequence with spectral
density function f(λ). The paper considers a question of applicability of central limit
theorem (CLT) for Toeplitz type quadratic form Qn in variables X(t), generated by an
integrable even function g(λ). Assuming that f(λ) and g(λ) are regularly varying at
λ = 0 of orders α and β respectively, we prove CLT for standard normalized quadratic
form Qn in the critical case α+ β = 1/2.
We also show that CLT is not valid under the single condition that the asymptotic
variance of Qn is separated from zero and infinity.
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1 Introduction

Let X(t), t = 0,±1, ... be a centered (IEX(t) = 0) real-valued stationary Gaussian
sequence with spectral density f(λ) and covariance function r(t), i. e.

X(t) =
∫ π

−π
eiλt f(λ) dλ. (1.1)

We consider a question concerning asymptotic distribution (as n→∞) of the following
Toeplitz type quadratic forms of the process X(t):

Qn =
n∑

k,j=1

a(k − j)X(k)X(j), (1.2)

∗This work was completed with the support of ANSEF Grant No. PS58 and NFSAT/CRDF
Grant No. MA 070-02/12011.
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where
a(k) =

∫ π

−π
eiλk g(λ) dλ, k = 0,±1, ... (1.3)

are the Fourier coefficients of some real, even, integrable function g(λ) on T = [−π, π].
We will refer g(λ) as a generating function for the quadratic form Qn. Throughout the
paper the functions f(λ) and g(λ) are assumed to be 2π-periodic.

The limit distribution of the random variables (1.2) is completely determined by
the spectral density f(λ) and the generating function g(λ), and depending on their
properties it can be either Gaussian (that is, Qn with an appropriate normalization
obey central limit theorem), or non-Gaussian. We naturally arise the following two
questions:

a) Under what conditions on f(λ) and g(λ) will the limits be Gaussian?
b) Describe the limit distributions, if they are non-Gaussian.

In this paper we essentially discuss the question a). This question goes back to the
classical monograph by Grenander and Szegö [9], where they considered this problem,
as an application of their theory of the asymptotic behavior of the trace of products
of truncated Toeplitz matrices.

Later this problem was studied by I. Ibragimov [11] and M. Rosenblatt [12], in
connection with statistical estimation of the spectral (F (λ)) and covariance (r(t))
functions, respectively. Since 1986, there has been a renewed interest in questions
a) and b), related to the statistical inferences for long-range dependent processes (see,
e.g., Avram [1], Fox and Taqqu [4], Giraitis and Surgailis [8], Terrin and Taqqu [14],
Taniguchi [17], Taniguchi and Kakizawa [18], and references therein).

Avram [1], Fox and Taqqu [4] and Giraitis and Surgailis [8] have obtained sufficient
conditions for quadratic form Qn to obey the central limit theorem (CLT). Below we
use the following notation:
By Q̃n we denote the normalized quadratic form:

Q̃n =
1√
n

(Qn − EQn) (1.4)

The notation
Q̃n ⊂=⇒ N(0, σ2) (1.5)

will mean that the distribution of the random variable Q̃n tends (as n → ∞) to the
centered normal distribution with variance σ2.

By Tn(f) and Tn(g) we denote the n× n Toeplitz matrices generated by functions
f and g, respectively, i.e.

Tn(f) = ||r(k − j)||k,j=1,n and Tn(g) = ||a(k − j)||k,j=1,n, (1.6)

where r(k) and a(k) are as in (1.1) and (1.3), respectively. By C,M,Ck,Mk we will
denote constants that can vary from line to line.

Theorem A (Avram). Let the spectral density f(λ) and the generating function g(λ)
be such that f(λ) ∈ Lp1(T), g(λ) ∈ Lp2(T), where p1, p2 ≥ 1 and 1/p1 + 1/p2 ≤ 1/2.
Then (1.5) holds with σ2 given by

σ2 = 16π3

∫ π

−π
f2(λ)g2(λ) dλ. (1.7)
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Remark 1.1. For p1 = p2 = ∞ Theorem A was first established by Grenander and
Szegö ([9], theorem 11.6), while the case p1 = 2, p2 = ∞ was proved by Ibragimov [11]
and Rosenblatt [12].

Theorem B (Fox and Taqqu). Assume that the conditions hold:
a) the discontinuities of f(λ) and g(λ) have Lebesgue measure zero, and f(λ) and g(λ)
are bounded on [δ, π] for all δ > 0;
b) there exist α < 1 and β < 1 such that α+ β < 1

2 ,

f(λ) ∼ |λ|−αL1(λ) as λ→ 0 (1.8)

and
g(λ) ∼ |λ|−βL2(λ) as λ→ 0, (1.9)

where L1(λ) and L2(λ) are slowly varying at λ = 0 functions. Then (1.5) holds with
σ2 as in (1.7).

The proofs of Theorems A and B in [1] and [4] are based on the well–known represen-
tation of the k–th order cumulant χk(·) of Q̃n (see, e.g. [9], [11] ):

χk(Q̃n) =
{

0, for k = 1
n−k/22k−1(k − 1)! tr [Tn(f)Tn(g)]k, for k ≥ 2,

where tr[A] stands for the trace of a matrix A.
A different approach [8] extended Theorem A to linear sequences. In the Gaussian

case their result can be formulated as follows.

Theorem C (Giraitis and Surgailis). Assume that

χ2(Q̃n) =
2
n

tr
[
Tn(f)Tn(g)

]2 −→ 16π3

∫ π

−π
f2(λ)g2(λ) dλ <∞. (1.10)

Then (1.5) holds with σ2 as in (1.7).

In [1] and [4] (see, also, [8]) was established that each of the conditions of Theorems A
and B imply (1.10), i. e. (1.10) is weaker than the conditions of Theorems A and B.
Unfortunately (1.10) is not an explicit condition. In [8] also was obtained the following
explicit sufficient condition.

Theorem D (Giraitis and Surgailis). Let f ∈ L2(T), g ∈ L2(T), fg ∈ L2(T) and∫ π

−π
f2(λ)g2(λ− µ) dλ −→

∫ π

−π
f2(λ)g2(λ) dλ as µ→ 0. (1.11)

Then (1.5) holds with σ2 as in (1.7).

In the same paper [8] Giraitis and Surgailis conjectured that (1.10) holds under the
single condition that the integral on the right hand side of (1.10) is finite.

In [6] one of the authors answered this conjecture negatively. We recall this result.
Consider the functions

f0(λ) =


(

2s

s2

)1/p
, if 2−s−1 ≤ λ ≤ 2−s, s = 2m

0, if 2−s−1 ≤ λ ≤ 2−s, s = 2m+ 1
(1.12)
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and

g0(λ) =


(

2s

s2

)1/q
, if 2−s−1 ≤ λ ≤ 2−s, s = 2m+ 1

0, if 2−s−1 ≤ λ ≤ 2−s, s = 2m,
, (1.13)

where m is a positive integer and p, q ≥ 1.
It is easy to see that f0(λ) ∈ Lp(T), g0(λ) ∈ Lq(T), f0(λ) g0(λ) ∈ Lr(T) for every r and

σ2 = 16π3

∫ π

−π
f2
0 (λ)g2

0(λ) dλ = 0.

On the other hand, in [6] was proved that for 1
p + 1

q > 1

χ2(Q̃n) =
2
n

tr (Tn(f0)Tn(g0))
2 −→∞ as n→∞, (1.14)

and thereby the convergence in (1.10) breaks down.
In [6] was conjectured, that the condition

0 <
∫ π

−π
f2(λ) g2(λ) dλ <∞

implies the convergence in (1.10).
The problem b), i.e. description of the limit distributions of quadratic forms Qn, if

they are non-Gaussian was considered by Terrin and Taqqu in [14], [15]. Let f(λ) =
|λ|−αL1(λ) and g(λ) = |λ|−βL2(λ), where L1(λ) and L2(λ) are slowly varying at 0,
and are bounded on bounded intervals. In [14], [15] was proved that if α < 1, β < 1,
and α+ β > 1/2 then the random variable

Q̂n =
1

nα+βL1(1/n)L2(1/n)
(Qn − EQn) (1.15)

converges in distribution to some non-Gaussian random variable Y (α, β), which can
be represented as a double Wiener-Itô integral.

Note that the slowly varying functions L1(λ) and L2(λ) are of importance because
they provide a great flexibility in the choice of functions f(λ) and g(λ). In [14] was
proved that they influence only the normalization in (1.15) and not the limit Y (α, β).
In this paper we prove that in the critical case α + β = 1/2 the limit distribution of
the standard normalized quadratic form Qn depends on functions L1(λ) and L2(λ).

The critical case α + β = 1/2 was partially investigated by Taqqu and Terrin in
[16]. Starting from Y (α, β), which exists only when α + β > 1/2, they showed that
when 0 < α < 1, 0 < β < 1 the random variable (α + β − 1/2)Y (α, β) converges in
distribution to a Gaussian random variable as α+ β approaches to 1/2.

Assuming that f(λ) and g(λ) are regularly varying at λ = 0 of orders α and β
respectively, we prove CLT for standard normalized quadratic form Qn in the critical
case α+β = 1/2. We also show that CLT for Qn is not valid under the single condition
that the asymptotic variance of Qn is separated from zero and infinity.
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2 Results

Let SV be the class of slowly varying at zero functions u(λ) satisfying

u(λ) ∈ L∞(IR), lim
λ→0

u(λ) = 0, u(λ) = u(−λ), 0 < u(λ) < u(µ) for 0 < λ < µ.

Theorem 2.1. Let
f(λ) ≤ |λ|−αL1(λ) (2.1)

and
|g(λ)| ≤ |λ|−βL2(λ), (2.2)

where

α < 1, β < 1, α+ β ≤ 1/2 and Li ∈ SV, λα+βLi ∈ L2(T), i = 1, 2. (2.3)

Then (1.5) holds with σ2 as in (1.7).

Remark 2.1. Examples of spectral density f(λ) and generating function g(λ) satis-
fying Theorem 2.1 provide the functions

f(λ) = |λ|−α| ln |λ||−γ and g(λ) = |λ|−β| ln |λ||−γ ,

where α < 1, β < 1, α+ β ≤ 1/2 and γ > 1/2.

For f, g ∈ L1(T) we denote

ϕ(t1, t2, t3) =
∫ π

−π
f(u)g(u− t1)f(u− t2)g(u− t3) du. (2.4)

Theorem 2.2. If the function ϕ(t1, t2, t3) ∈ L2(T3) is continuous at (0, 0, 0), then
(1.5) holds with σ2 as in (1.7).

Proposition 2.1. Theorem 2.2 implies Theorems A and D.

Remark 2.2. For functions f(λ) = λ−3/4 and g(λ) = λ3/4 satisfying conditions of
Theorem B the function ϕ(t1, t2, t3) is not defined for t2 = 0, t1 6= 0, t3 6= 0. This
shows that Theorem 2.2 generally does not imply Theorem B.

The next result shows that the condition of positiveness and finiteness of asymptotic
variance of quadratic form Qn is not sufficient for Qn to obey CLT.

Proposition 2.2. There exist spectral density f(λ) and generating function g(λ), such
that

0 <
∫ π

−π
f2(λ) g2(λ) dλ <∞ (2.5)

and
lim

n→∞
supχ2(Q̃n) = lim

n→∞
sup

2
n

tr (Tn(f)Tn(g))2 = ∞, (2.6)

that is, the condition (2.5) does not guarantee convergence in (1.10).
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3 Preliminaries

Recall (see [3], [13]) that a positive function u(x) is called slowly varying at zero, if

lim
x→0

u(λx)
u(x)

= 1,

for any λ > 0. We list some properties of slowly varying functions. The following
property is well known (see, e.g., [13]).

Lemma 3.1. Let u(x), v(x), x ∈ IR be slowly varying at zero functions. Then
a) For any p < 1 ∫ y

o
x−pu(x)dx = O

(
y1−pu(y)

)
as y → 0.

b) The function xpu(x) is increasing in some interval (0, δ), if p > 0 and is decreas-
ing, if p < 0.

c) The functions uv and u
v are slowly varying at zero functions.

Lemma 3.2. Given functions u, v ∈ SV and numbers p, q < 1, p+ q > 1, there exists
a constant M > 0 such that∫

T
|x|−p|x− y|−qu(x)v−1(x− y)dx ≤M |y|1−p−qu(y)v−1(y), y ∈ T. (3.1)

Proof. Denote Q(x, y) = |x|−p|x− y|−qu(x)v−1(x− y). It is not hard to check that for
any δ > 0

sup
|y|>δ

∫
T
Q(x, y)dx <∞ and min

|y|>δ
y1−p−qu(y)v−1(y) > 0.

Therefore it is enough to prove (3.1) for y ∈ (−δ, δ) with sufficiently small δ > 0.
Applying Lemma 3.1 a) we get∫

0<|x|<|y|/2

Q(x, y)dx ≤
(
|y|
2

)−q

v−1
(y

2

) ∫
0<|x|<|y|/2

|x|−pu(x)dx

≤ Cy1−p−qu(y)v(y), (3.2)

∫
|y|/2<|x|<2|y|

Q(x, y)dx ≤
(
|y|
2

)−p

u(2|y|)
∫

|y|/2<|x|<2|y|

|x− y|−qv−1(x− y)dx

≤ C|y|−pu(|y|)
∫

0<|x|<4|y|

|x|−qv−1(x)dx ≤ Cy1−p−qu(y)v(y), (3.3)

and ∫
2|y|<|x|<π

Q(x, y)dx ≤ |y|−pv−1(y)
∫

2|y|<|x|<π

|x|−qu(x)dx

≤ Cy1−p−qu(y)v(y). (3.4)

From (3.2)-(3.4) we obtain (3.1). Lemma 3.2 is proved.
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The proof of the next lemma is similar.

Lemma 3.3. Given functions u,w ∈ SV satisfying
∫

T x
−1u(x)w−3(x)dx < ∞. For

any q ∈ (0, 1) there exists a constant M > 0 such that∫
T
|x|−1|x− y|−qu(x)w−2(x)w−1(x− y)dx ≤M |y|−qw−3(y), y ∈ T.

We denote by Dn(x) the Dirichlet kernel:

Dn(x) =
sin(nx/2)
sin(x/2)

. (3.5)

It is not hard to see that

|Dn(x)| ≤ min{n, |x|−1}, |Dn(x)| ≤ Cnψn(x), x ∈ T (3.6)

where
ψn(x) = (1 + n|x|)−1.

Lemma 3.4. For any function w ∈ SV and a number t ∈ (0, 1) there exists a constant
M > 0 such that

|Dn(x)| ≤Mw (1/n)nt|x|t−1w−1(x).

Proof. According to Lemma 3.1 b) the functions xt−1w−1(x) and x−tw(x) are decreas-
ing in some interval (0, δ). Since

min{w (1/n)nt|x|t−1w−1(x)} > 0,

we can assume that n−1 < δ and |x| < δ. Now, if |x| ≤ n−1 then n1−tw−1(1/n) ≤
xt−1w−1(x) and (3.6) implies

|Dn(x)| ≤ n = w (1/n)ntn1−tw−1 (1/n) ≤ w (1/n)nt|x|t−1w−1(x).

The proof in the case |x| > n−1 is similar. Lemma 3.4 is proved.

The following lemma was proved in [8].

Lemma 3.5. For any δ ∈ (0, 1) there exists a constant Cδ > 0 such that

n

∫
T
ψn(x− y)ψn(x− z)dx ≤ Cδψ

1−δ
n (y − z), y, z ∈ T.

Denote

Φn(x1, x2, x3) =
1

(2π)3n
Dn(x1)Dn(x2)Dn(x3)Dn(x1 + x2 + x3), (3.7)

where Dn(x) is as in (3.5). Given α ∈ (0, π) we set

Eα = {|x| ≤ α} = {(x1, x2, x3); |xk| ≤ α, k = 1, 2, 3},

Ec
α = {|x| ≤ π} \ {|x| ≤ α}.
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Lemma 3.6. The kernel Φn(x) defined by (3.7) with x = (x1, x2, x3) possesses the
following properties:

a)
∫

T3

Φn(x) dx = 1;

b) sup
n

∫
T3

|Φn(x)| dx = C1 <∞;

c) for any ε (0 < ε ≤ π)

lim
n→∞

∫
Ec

ε

|Φn(x)| dx = 0,

d) for any δ > 0 there exists a positive constant Mδ such that∫
Ec

δ

Φ2
n(x)dx ≤Mδ for n = 1, 2, . . . . (3.8)

Proof. Proofs of a) - c) can be found in [2] (Lemma 3.1). To prove d) first observe that∫
T
D2

n(x)dx ≤ C n and |Dn(x)| ≤ Cδ for |x| > δ, n = 1, 2, . . . , (3.9)

where Dn(x) is the Dirichlet kernel, while C and Cδ are some positive constants. We
have ∫

Ec
δ

Φ2
n(x)dx ≤

∫
|x1|>δ

Φ2
n(x)dx +

∫
|x2|>δ

Φ2
n(x)dx

+
∫

|x3|>δ

Φ2
n(x)dx =: I1 + I2 + I3. (3.10)

Clearly, it is enough to estimate I1. We have

I1 ≤
∫

|x1|>δ, |x2|>δ/3

Φ2
n(x)dx +

∫
|x1|>δ, |x3|>δ/3

Φ2
n(x)dx

+
∫

|x1|>δ, |x2|≤δ/3, |x3|≤δ/3

Φ2
n(x)dx =: I(1)

1 + I
(2)
1 + I

(3)
1 . (3.11)

Using (3.9) we obtain

I
(1)
1 ≤ Cδ ·

1
n2

∫
T3

D2
n(x3)D2

n(x1 + x2 + x3)dx1dx2dx3 ≤Mδ. (3.12)

Likewise,
I

(2)
1 ≤Mδ. (3.13)

Now, observing that in the integral I(3)
1 , |x1 + x2 + x3| > δ/3, from (3.9) we find

I
(3)
1 ≤ Cδ ·

1
n2

∫
T3

D2
n(x2)D2

n(x3)dx1dx2dx3 ≤Mδ. (3.14)

From (3.12) – (3.14) we obtain (3.11). Lemma 3.6 is proved.
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Lemma 3.7. Let the function Ψ(u) ∈ L2(T3) be continuous at u = (0, 0, 0). Then

lim
n→∞

∫
T3

Ψ(u)Φn(u)du = Ψ(0, 0, 0), (3.15)

where u = (u1, u2, u3) and Φn(u) is defined by (3.7).

Proof. By Lemma 3.6 a) we have

Rn :=
∫

T3

Ψ(u)Φn(u)du−Ψ(0, 0, 0) =
∫

T3

[Ψ(u)−Ψ(0, 0, 0)]Φn(u)du. (3.16)

For any ε > 0 can be chosen a δ > 0 to satisfy

|Ψ(u)−Ψ(0, 0, 0)| < ε/C1, (3.17)

where C1 is the constant from Lemma 3.6 b). We represent Ψ = Ψ1 + Ψ2, such that

‖Ψ1‖2 ≤ ε/
√
Mδ and ‖Ψ2‖∞ <∞, (3.18)

where Mδ is the constant from Lemma 3.6 d). Using Lemma 3.6 b) - d) and (3.16) -
(3.18) for sufficiently large n we obtain

|Rn| ≤
∫

Eδ

|Ψ(u)−Ψ(0)||Φn(u)|du +
∫

Ec
δ

|Ψ1(u)||Φn(u)|du

+
∫

Ec
δ

|Ψ2(u)−Ψ(0)||Φn(u)|du ≤ ε

C1

∫
Eδ

|Φn(u)|du

+ ‖Ψ1‖2

[∫
Ec

δ

Φ2
n(u)du

]1/2

+ C2

∫
Ec

δ

|Φn(u)|du ≤ 3 ε.

This together with (3.16) implies (3.15). Lemma 3.7 is proved.

4 Proofs

Proof of Theorem 2.1. For f, g ∈ L1(T) and x = (x1, x2, x3, x4) we set

F (x) = f(x1)f(x2)g(x3)g(x4),

and let
Hn(x) = Gn(x1 − x3)Gn(x2 − x3)Gn(x4 − x1)Gn(x4 − x2),

where

Gn(u) =
n∑

k=1

eiku = eiu(n+1)/2 ·Dn(u). (4.1)

It is easy to check that

tr (Tn(f)Tn(g))2 =
∫

T4

F (x)Hn(x)dx. (4.2)
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By Theorem B it is enough to consider the case α + β = 1
2 . Thus, by Theorem C we

need to prove that

lim
n→∞

1
n

∫
T4

F (x)Hn(x)dx = 8π3

∫
T
f2(x)g2(x)dx, (4.3)

provided that
f(x) ≤ |x|−αL(x), |g(x)| ≤ |x|−βL(x), x ∈ T, (4.4)

where L = L1 + L2 ∈ SV and

α < 1, β < 1, α+ β =
1
2
,

∫
T
x−1L2(x)dx <∞. (4.5)

If α, β ≥ 0, then (4.4) implies f ∈ L1/α(T), g ∈ L1/β(T), and Theorem 2.1 follows from
Theorem A. Assuming β < 0, from (4.5) we have

1
2
< α < 1, −1

2
< β < 0. (4.6)

For ε ∈ (0, 1) we set

fε(x) =

{
0, if |x| < ε,

f(x), if ε ≤ |x| ≤ π.

and
Ti,ε =

{
x ∈ T4 : |xi| < ε

}
, i = 1, 2.

We have
1
n

∫
T4

F (x)Hn(x)dx = J1
n + J2

n,

where
J1

n :=
1
n

∫
T4

fε(x1)fε(x2)g(x3)g(x4)Hn(x)dx

and
|J2

n| ≤
1
n

∫
T1,ε

|F (x)Hn(x)|dx +
1
n

∫
T2,ε

|F (x)Hn(x)|dx =: I1
n + I2

n.

Since fε, g ∈ L∞(T) we have

lim
n→∞

J1
n = 8π3

∫
T
f2

ε (x)g2(x)dx.

The last integral tends to
∫

T f
2(x)g2(x)dx as ε→ 0, hence (4.3) follows from

lim
ε→0, n→∞

(
I1
n + I2

n

)
= 0. (4.7)

It is enough to prove (4.7) for I1
n. Set

Bi,j =
{
x ∈ T4 : |xi| ≤

|xj |
2

}
, i = 1, 2, j = 3, 4,

B =
{
x ∈ T4 : |x1| < ε, |xi| >

|xj |
2
, i = 1, 2, j = 3, 4

}
.
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Then we have

I1
n ≤

1
n

2∑
i=1

4∑
j=3

∫
Bi,j

F (x)Hn(x)dx +
1
n

∫
B
F (x)Hn(x)dx. (4.8)

Let w ∈ SV be a function satisfying∫
T
x−1L2(x)w−4(x)dx <∞. (4.9)

Since |x3|/2 < |x1 − x3| < 2|x3| if x ∈ B1,3, the bounds (4.4) and Lemma 3.4 imply

A1,3 : =
1
n

∫
B1,3

F (x)Gn(x)dx

≤ Cw4

(
1
n

) ∫
B1,3

|x1|−α|x2|−α|x3|−β|x4|−βL(x1)L(x2)L(x3)L(x4)

× x1 − x3|−3/4|x2 − x3|−3/4|x1 − x4|−3/4|x2 − x4|−3/4

× w−1(x1 − x3)w−1(x2 − x3)w−1(x1 − x4)w−1(x2 − x4)dx

≤ C w4

(
1
n

) ∫
T2

|x2|−α|x4|−β|x2 − x4|−3/4L(x2)L(x4)w−1(x2 − x4)dx2

×
∫

T
|x1|−α|x1 − x4|−3/4L(x1)w−1(x1 − x4)dx1

×
∫

T
T |x3|−β−3/4|x2 − x3|−3/4L(x3)w−1(x3)w−1(x2 − x3)dx3dx2dx4.

Applying first Lemma 3.2, then Lemma 3.3 we obtain

A1,3 ≤ Cw4

(
1
n

) ∫
T2

|x2|−α|x4|−β|x2 − x4|−3/4L(x2)L(x4)w−1(x2 − x4)

× |x4|−α+1/4L(x4)w−1(x4)|x2|−β−1/2L(x2)w−2(x2)dx2dx4

= Cw4

(
1
n

) ∫
T
|x4|−1/4L2(x4)w−1(x4)

×
∫

T
|x2|−1|x2 − x4|−3/4L2(x2)w−2(x2)w−1(x2 − x4)dx2dx4

≤ Cw4

(
1
n

) ∫
T
|x4|−1L2(x4)w−4(x4)dx4 = o(1), (4.10)

as n→∞. Similarly we can prove that all the integrals in the first sum in (4.8) tend
to zero as n → ∞. To estimate the last integral in (4.8) we use (4.4) and Lemma 3.5
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to obtain

A : =
1
n

∫
B
|F (x)Hn(x)|dx

≤ Cn3

∫
B
|x1|−α|x2|−α|x3|−β|x4|−βL(x1)L(x2)L(x3)L(x4)

× ψn(x1 − x3)ψn(x2 − x3)ψn(x1 − x4)ψn(x2 − x4)dx

≤ Cn3

∫
(−2ε,2ε)2

|x3|−1/2|x4|−1/2L(x3)L(x4)

×
∫

T
ψn(x1 − x3)ψn(x1 − x4)L(x1)dx1

×
∫

T
ψn(x2 − x3)ψn(x2 − x4)L(x2)dx2dx3dx4

≤ Cn

∫
(−2ε,2ε)

|x3|−1/2L(x3)
∫

T
|x4|−1/2ψ1,5

n (x3 − x4)L(x4)dx4dx3

≤ C

2nε∫
−2nε

|y|−1/2L
(y
n

) ∫ ∞

−∞

|x|−1/2

(1 + |x− y|)1,5
L

(x
n

)
dxdy. (4.11)

Let us prove that∫ ∞

−∞

|x|−1/2

(1 + |x− y|)1,5
L

(x
n

)
dx ≤ Cy−1/2L

(y
n

)
, y ∈ T. (4.12)

Indeed, for y ∈ T∫
|x|≤|y|

|x|−1/2

(1 + |x− y|)1,5
L

(x
n

)
dx ≤ CL

(y
n

) ∫
T
|x|−1/2dx

≤ CL
(y
n

)
≤ Cy−1/2L

(y
n

)
. (4.13)

According to Lemma 3.1 the function t−1/2L(t) is decreasing on some interval (0, δ).
Hence, assuming without loss of generality, that n > π

δ , we have for |x| > |y|

|x|−1/2L
(x
n

)
= n−1/2

(
|x|
n

)−1/2

L
(x
n

)
≤ n−1/2

(
|y|
n

)−1/2

L
(y
n

)
= |y|−1/2L

(y
n

)
.

Therefore∫
|x|>|y|

|x|−1/2

(1 + |x− y|)1,5
L

(x
n

)
dx ≤ C|y|−1/2L

(y
n

) ∫ ∞

−∞

1
(1 + |x|)1,5

dx
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≤ C|y|−1/2L
(y
n

)
. (4.14)

From (4.13), (4.14) we obtain (4.12) and from (4.11), (4.12) and (4.5)

A ≤ C

2nε∫
−2nε

|y|−1L2
(y
n

)
dy = C

2ε∫
−2ε

|t|−1L2(t)dt = o(ε), (4.15)

as ε → 0. A combination of (4.8), (4.10) and (4.15) yields (4.7). Theorem 2.1 is
proved.

Proof of Theorem 2.2. By the change of variables x1 = u, x1 − x3 = u1, x3 − x2 = u2

and x2 − x4 = u3 from (4.2) we obtain

tr (Tn(f)Tn(g))2 =
∫

T 4

Gn(u1)Gn(u2)Gn(u3)Gn(−u1 − u2 − u3) (4.16)

× f(u)g(u− u1)f(u− u1 − u2)g(u− u1 − u2 − u3) du1du2du3du4,

where Gn(u) is as in (4.1). Taking into account the equality

eiu1(n+1)/2 · eiu2(n+1)/2 · eiu3(n+1)/2 · e−i(u1+u2+u3)(n+1)/2 = 1

and that Dn(u) is even function, from (4.16) we obtain

tr (Tn(f)Tn(g))2 = 8π3

∫
T3

Ψ(u1, u2, u3)Φn(u1, u2, u3) du1du2du3, (4.17)

where Φn(u1, u2, u3) is defined by (3.7), Ψ(u1, u2, u3) = ϕ(u1, u1 +u2, u1 +u2 +u3) and
ϕ(u1, u2, u3) is defined by (2.4). By Theorem C and (4.17) we need to prove that

lim
n→∞

∫
T3

Ψ(u)Φn(u)du =
∫

T
f2(x)g2(x)dx. (4.18)

Now, since the functions ϕ(u1, u2, u3) and Ψ(u1, u2, u3) = ϕ(u1, u1 + u2, u1 + u2 + u3)
are square integrable and continuous at (0, 0, 0) simultaneously, and

Ψ(0, 0, 0) =
∫

T
f2(x)g2(x)dx,

from Lemma 3.7 we obtain (4.18). Theorem 2.2 is proved.

Proof of Proposition 2.1. To show that Theorem 2.2 implies Theorem A it is enough
to prove that the function

ϕ(t) :=
∫

T
f0(u)f1(u− t1)f2(u− t2)f3(u− t3)du, t = (t1, t2, t3) (4.19)

belongs to L2(T3) and is continuous at (0, 0, 0), provided that

fi ∈ Lpi(T), 1 ≤ pi ≤ ∞, i = 0, 1, 2, 3,
3∑

i=0

1
pi
≤ 1. (4.20)
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It follows from Hölder inequality and (4.20) that

|ϕ(t)| ≤
3∏

i=0

||fi||Lpi (T), t = (t1, t2, t3) ∈ T3.

Therefore, ϕ(t) ∈ L2(T3). To prove the continuity of ϕ(t) at the point (0, 0, 0) we
consider three cases.

Case 1. pi <∞, i = 0, 1, 2, 3.
For an arbitrary ε > 0 we find δ > 0 satisfying (see (4.20))

‖fi(u− t)− fi(u)‖pi ≤ ε, i = 1, 2, 3, if |t| ≤ δ. (4.21)

We fix t = (t1, t2, t3) with |t| < δ and denote

f i(u) = fi(u+ ti)− fi(u), i = 1, 2, 3.

Then (4.21) implies ‖f i‖pi ≤ ε, i = 1, 2, 3 and we have

ϕ(t) =
∫

T
f0(u)

3∏
i=1

(
f i(u) + fi(u)

)
du = ϕ(0, 0, 0) +W,

where the quantity W is a sum of five integrals. Each of them contains at least one
function f i and can be estimated as the following one∣∣∣∣∫

T
fo(u)f1(u)f2(u)f3(u)du

∣∣∣∣ ≤ ‖fo‖p0‖f1‖p1‖f2(u)‖p2‖f3‖p3‖ ≤ Aε.

Case 2. pi ≤ ∞, i = 0, 1, 2, 3,
3∑

i=0

1
pi
< 1.

There exist finite numbers p′i < pi, i = 0, 1, 2, 3,
∑3

i=0 1/p′i ≤ 1 for which we have
fi ∈ Lpi . Hence ϕ is continuous at (0, 0, 0) as in the case 1.

Case 3. pi ≤ ∞, i = 0, 1, 2, 3,
3∑

i=0

1
pi

= 1.

At least one of numbers pi is finite. Suppose, without loss of generality, that p0 <∞.
For any ε > 0 we find functions f ′0, f

′′
0 such that

f0 = f ′0 + f ′′0 , f ′0 ∈ L∞, ‖f ′′0 ‖p0 < ε. (4.22)

Then
ϕ(t) = ϕ′(t) + ϕ′′(t), (4.23)

where the functions ϕ′ and ϕ′′ are defined as ϕ in (4.19) with f0 replaced by f ′0 and f ′′0
respectively. From (4.22) follows that ϕ′ is continuous at (0, 0, 0) (see case 2), while
for ϕ′′ the Hölder inequality imply |ϕ′′(t)| ≤ Aε. Hence, for sufficiently small |t|

|ϕ(t)− ϕ(0, 0, 0)| ≤ |ϕ′(t)− ϕ′(0, 0, 0)|+ |ϕ′′(t)− ϕ′′(0, 0, 0)| ≤ (A+ 1)ε,

and the result follows.
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Now proceed to prove that Theorem 2.2 implies Theorem D. To this end it is enough
to show that the function

ϕ(t) =
∫

T
f(u)g(u− t1)f(u− t2)g(u− t3)du, t = (t1, t2, t3) ∈ T3

is continuous at (0, 0, 0), provided that f and g satisfy conditions of theorem D, i. e.
f ∈ L2(T), g ∈ L2(T), fg ∈ L2(T) and (1.11) holds.
Since

ϕ2(t) ≤ 2π
∫

T
f2(u)g2(u− t1)f2(u− t2)g2(u− t3)du,

we have∫
T3

ϕ2(t) dt ≤
∫

T

[∫
T
g2(u− t1) dt1

∫
T
f2(u− t2) dt2

∫
T
g2(u− t3) dt3

]
×f2(u)du = ||f ||42||g||42 <∞.

Now we prove the continuity of ϕ(t) at the point (0, 0, 0). Let ε be an arbitrary positive
number. We denote

EK = {u ∈ T : |f(u)| ≤ K}, f1(u) = χEK
(u)f(u), f2(u) = f(u)− f1(u),

where K > 0 is chosen to satisfy
∫

T\Ek
f2(u)g2(u)du ≤ ε. Then

f = f1 + f2, ‖f1‖∞ ≤ K,

∫
T
f2
2 (u)g2(u)du ≤ ε. (4.24)

We have

ϕ(t) =
∫

T
f1(u)g(u− t1)f1(u− t2)g(u− t3)du

+
∫

T
f2(u)g(u− t1)f(u− t2)g(u− t3)du

+
∫

T
f1(u)g(u− t1)f2(u− t2)g(u− t3)du

=: ϕ1(t) + ϕ2(t) + ϕ3(t). (4.25)

We estimate the functions ϕk(t), k = 1, 2, 3 separately. We have

ϕ1(t) =
∫

T
f1(u)g(u− t1)f1(u− t2) [g(u− t3)− g(u)] du

+
∫

T
f1(u)g(u)f1(u− t2) [g(u− t1)− g(u)] du

+
∫

T
f1(u)g2(u)f1(u− t2)du =: I1 + I2 + I3. (4.26)

Using Hölder inequality, from (4.24) we get

|I1| ≤ K2‖g‖2 · ‖g(u+ t3)− g(u)‖2 = o(1), as t3 → 0. (4.27)

15



Similarly
|I2| = o(1) as t1 → 0. (4.28)

From (4.24) we have∣∣∣∣I3 − ∫
T
ϕ(0, 0, 0)

∣∣∣∣ =
∣∣∣∣∫

T
f1(u+ t2)g2(u+ t2)f1(u)du−

∫
T
f2
1 (u)g2(u)du

∣∣∣∣
+

∣∣∣∣∫
T
f2
2 (u)g2(u)du

∣∣∣∣
≤ K

∥∥f1(u+ t2)g2(u+ t2)− f1(u)g2
1(u)

∥∥
1
+ ε = o(1) + ε, (4.29)

as t2 → 0. From (4.26)-(4.29) for sufficiently small |t| we obtain

|ϕ1(t)− ϕ(0, 0, 0)| ≤ 2ε. (4.30)

Next, for ϕ2(t) we have

|ϕ2(t)|2 ≤
∫

T
f2
2 (u)g2(u− t1)du

∫
T
f2
2 (u− t2)g2(u− t3)du

=
∣∣∣∣∫

T
f2(u)g2(u− t1)du−

∫
T
f2
1 (u)g2(u− t1)du

∣∣∣∣
×

∫
T
f2(u)g2(u+ t2 − t3)du

→
∣∣∣∣∫

T
f2(u)g2(u)du−

∫
T
f2
1 (u)g2(u)du

∣∣∣∣ ∫
T
f2(u)g2(u)du.

as |t| → 0. Therefore, in view of (4.24) for sufficiently small |t|

|ϕ2(t)| ≤ ε

∫
T
f2(u)g2(u)du. (4.31)

Similarly we can prove that for enough small |t|

|ϕ3(t)| ≤ ε

∫
T
f2(u)g2(u)du. (4.32)

A combination of (4.25) and (4.30)-(4.32) yields

lim
t→0

ϕ(t) = ϕ(0, 0, 0).

This completes the proof of Proposition 2.1.

Proof of Proposition 2.2. We construct functions f(λ) and g(λ) satisfying the condi-
tions (2.5) and (2.6). Let p ≥ 2 be fixed, we choose a number q > 1 satisfying 1

p + 1
q > 1.

For such p and q consider the functions f0(λ) and g0(λ) defined by (1.12) and (1.13)
respectively. For an arbitrary finite positive constant C we set g±(λ) = g0(λ)± C.
Since the functions f0(λ) and g0(λ) have disjoint supports, we have∫ π

−π
f2
0 (λ) g2

±(λ) dλ =
∫ π

−π
f2
0 (λ) (g0 ± C)2(λ) dλ = C2

∫ π

−π
f2
0 (λ) dλ <∞,
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and hence (2.5) is fulfilled. Next, by (1.14)

1
n

tr (Tn(f0)Tn(g0))
2 −→∞ as n→∞, (4.33)

and by Theorem A with p1 = p ≥ 2 and p2 = ∞,

1
n
C2 tr

(
T 2

n(f0)
)
−→ 8π3C2

∫ π

−π
f2
0 (λ) dλ <∞. (4.34)

On the other hand, we have

tr (Tn(f0)Tn(g±))2 = tr (Tn(f0)Tn(g0 ± C))2

= tr (Tn(f0)Tn(g0))
2 ± 2C tr

(
T 2

n(f0)Tn(g0)
)

+ C2 tr
(
T 2

n(f0)
)
,

which combined with (4.33) and (4.34) implies

1
n

tr (Tn(f0)Tn(g+))2 +
1
n

tr (Tn(f0)Tn(g−))2

=
2
n

tr (Tn(f0)Tn(g0))
2 +

2
n
C2 tr

(
T 2

n(f0)
)
→∞ as n→∞.

Therefore, either

lim
n→∞

sup
1
n

tr (Tn(f0)Tn(g+))2 = ∞,

or
lim

n→∞
sup

1
n

tr (Tn(f0)Tn(g−))2 = ∞.

Thus, we obtain

lim
n→∞

supχ2(Q̃n) = lim
n→∞

sup
2
n

tr (Tn(f)Tn(g))2 = ∞

with f = f0 and g = g+ or g = g−. This completes the proof of Proposition 2.2.
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